As can be volatilized naturally; however, this has adverse environmental effects. In this study, we investigated As volatilization in flooded paddy soil with the addition of biochar (BC) and Fe-Mn-La-modified BC composites (FMLBCs). The addition of BC and FMLBCs caused decreases in total As volatilization in the soil over 7 weeks. Maximum volatilization was achieved in the third week followed by stabilization. Volatilization decreased by 21.9%, 18.8%, 20.8%, and 31.1% with the addition of BC, FMLBC, FMLBC, and FMLBC (BC/Fe/Mn/La weight ratios different), respectively, in lightly contaminated soil, and by 15.2%, 20.5%, 17.6%, and 25.4%, respectively, in highly contaminated soil. The FMLBCs decreased the exchangeable As fractions and increased the non-swappable As in the soil. Furthermore, the addition of FMLBCs significantly reduced the As(III) concentration in a suspended solution (P < 0.05), whereas no significant changes were observed in the As(V) or methyl arsenic acid concentrations. Soil enzyme activity increased and the relative abundances of Proteobacteria and Actinobacteria changed with the addition of FMLBCs. Therefore, the mechanism by which FMLBCs affected As volatilization likely included the following two aspects: (1) FMLBCs affected the transformation and distribution of soil As and decreased As dissolution, crystallization, and methylation; (2) FMLBCs influenced soil properties, which directly affected microorganism activity, thereby affecting As volatilization. FMLBCs therefore can decrease As volatilization properties and be used to control As volatilization in As-contaminated paddy soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-14115-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!