Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous aggregation state as an instant response to the shear stress caused by usual pipetting even at a low FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. These results suggested that the non-coding RNA could be a prospective suppressor of FUS aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096841 | PMC |
http://dx.doi.org/10.1038/s41598-021-89075-w | DOI Listing |
J Fungi (Basel)
January 2025
Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy is connected to changes in the epigenome, including reductions in the levels of H3S10ph, H3K14ac, and H3K56ac.
View Article and Find Full Text PDFLately, important advancements in visualizing RNAs in fixed and live cells have been achieved. While mRNA imaging techniques are well-established, the development of effective methods for studying non-coding RNAs (ncRNAs) in living cells are still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase-transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!