Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier-Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore's works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian [Formula: see text] and speculate on its implications concerning Tao's approach to the blow-up problem in the Navier-Stokes equations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126859 | PMC |
http://dx.doi.org/10.1073/pnas.2026818118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!