We showed recently that the erminal enter inase III (GCKIII) SmKIN3 from the fungus is involved in sexual development and hyphal septation. Our recent extensive global proteome and phosphoproteome analysis revealed that SmKIN3 is a target of the iatin-nteracting hosphatase nd inase (STRIPAK) multisubunit complex. Here, using protein samples from the wild type and three STRIPAK mutants, we applied absolute quantification by arallel-eaction onitoring (PRM) to analyze phosphorylation site occupancy in SmKIN3 and other eptation nitiation etwork (SIN) components, such as CDC7 and DBF2, as well as BUD4, acting downstream of SIN. For SmKIN3, we show that phosphorylation of S668 and S686 is decreased in mutants lacking distinct subunits of STRIPAK, while a third phosphorylation site, S589, was not affected. We constructed SmKIN3 mutants carrying phospho-mimetic and phospho-deficient codons for phosphorylation sites S589, S668, and S686. Investigation of hyphae in a Δ strain complemented by the S668 and S686 mutants showed a hyper-septation phenotype, which was absent in the wild type, the Δ strain complemented with the wild-type gene, and the S589 mutant. Furthermore, localization studies with SmKIN3 phosphorylation variants and STRIPAK mutants showed that SmKIN3 preferentially localizes at the terminal septa, which is distinctly different from the localization of the wild-type strains. We conclude that STRIPAK-dependent phosphorylation of SmKIN3 has an impact on controlled septum formation and on the time-dependent localization of SmKIN3 on septa at the hyphal tip. Thus, STRIPAK seems to regulate SmKIN3, as well as DBF2 and BUD4 phosphorylation, affecting septum formation. Phosphorylation and dephosphorylation of proteins are fundamental posttranslational modifications that determine the fine-tuning of their biological activity. Involved in this modification process is the recently identified iatin-nteracting hosphatase nd inase (STRIPAK) multisubunit complex, which is evolutionarily conserved from fungi to humans. STRIPAK functions as a macromolecular assembly communicating through physical interactions with other conserved signaling protein complexes to constitute larger dynamic protein networks. Its function is implied in many cellular processes, such as signal transduction pathways, growth, and cellular differentiation. We applied absolute quantification of protein phosphorylation by arallel-eaction onitoring (PRM) to analyze phosphorylation site occupancy in signaling components that are linked to the STRIPAK complex. Using the filamentous fungus , we provide evidence for the phosphorylation-dependent role of the Hippo-like germinal center kinase SmKIN3, which controls septum formation, and localize it in a time-dependent manner on septa at the hyphal tip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262875 | PMC |
http://dx.doi.org/10.1128/mBio.00658-21 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Clinical Medicine, Fujian Medical University, Fuzhou, 350000, China.
Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.
View Article and Find Full Text PDFBackground: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!