Glioblastoma multiforme (GBM) is a first primary Central Nervous System tumor with high incidence and lethality. Its treatment is hampered by the difficulty to overcome the blood-brain barrier (BBB) and by the non-specificity of chemotherapeutics to tumor cells. This study was based on the development characterization and in vitro efficacy of folate-modified TPGS transfersomes containing docetaxel (TF-DTX-FA) to improve GBM treatment. TF-DTX-FA and unmodified transfersomes (TF-DTX) were prepared through thin-film hydration followed by extrusion technique and characterized by physicochemical and in vitro studies. All formulations showed low particles sizes (below 200 nm), polydispersity index below 0.2, negative zeta potential (between -16.75 to -12.45 mV) and high encapsulation efficiency (78.72 ± 1.29% and 75.62 ± 0.05% for TF-DTX and TF-DTX-FA, respectively). Furthermore, cytotoxicity assay of TF-DTX-FA showed the high capacity of the nanocarriers to reduce the viability of U-87 MG in both 2D and 3D culture models, when compared with DTX commercial formulation and TF-DTX. In vitro cellular uptake assay indicated the selectivity of transfersomes to tumoral cells when compared to normal cells, and the higher ability of TF-DTX-FA to be internalized into 2D U-87 MG in comparison with TF-DTX (72.10 and 62.90%, respectively, after 24 h). Moreover, TF-DTX-FA showed higher permeability into 3D U-87 MG spheroid than TF-DTX, suggesting the potential FA modulation to target treatment of GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112033DOI Listing

Publication Analysis

Top Keywords

glioblastoma multiforme
8
tf-dtx-fa
6
tf-dtx
5
docetaxel-loaded folate-modified
4
folate-modified tpgs-transfersomes
4
tpgs-transfersomes glioblastoma
4
treatment
4
multiforme treatment
4
treatment glioblastoma
4
multiforme gbm
4

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Purpose: Social determinants of health including neighborhood socioeconomic status, have been established to play a profound role in overall access to care and outcomes in numerous specialized disease entities. To provide glioblastoma multiforme (GBM) patients with high-quality care, it is crucial to identify predictors of hospital length of stay (LOS), discharge disposition, and access to postoperative adjuvant chemoradiation. In this study, we incorporate a novel neighborhood socioeconomic status index (NSES) and develop three predictive algorithms for assessing post-operative outcomes in GBM patients, offering a tool for preoperative risk stratification of GBM patients.

View Article and Find Full Text PDF

Glioblastoma is considered the most malignant central nervous system tumor. This study aimed to investigate effects of latent transforming growth factor-β binding protein-2 (LTBP2) on glioblastoma growth and associated mechanisms. LTBP2 gene transcription in glioblastoma was determined using RT-PCR.

View Article and Find Full Text PDF

Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.

Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.

View Article and Find Full Text PDF

Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!