The impact of multimodal pore size considered independently from porosity on mechanical performance and osteogenic behaviour of titanium scaffolds.

Mater Sci Eng C Mater Biol Appl

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leics LE11 3TU, UK.

Published: May 2021

Titanium porous scaffolds comprising multimodal pore ranges (i.e., uni-, bi-, tri-modal and random) were studied to evaluate the effect of pore size on osteoblastogenesis. The scaffolds were manufactured using spaceholder-powder metallurgy, and porosity and pore size were kept independent. Their mechanical and physical properties (i.e., stiffness, strength, total and open porosity) were determined. In a first step, unimodal porous samples were tested with a mouse osteoblastic clonal cell line to ascertain pore size and porosity effects on cellular behaviour. Their proliferation (via cell number and total protein content), differentiation (via ALP enzyme levels) and maturation potency (with gene markers (Runx2, osteocalcin) and cytoplasmatic calcium) were investigated. In a second step informed by the previous results, multimodal scaffolds were shortlisted according to a set of criteria that included stiffness similar to that of cortical or trabecular bone, high strength and high open porosity. Their bioactivity performance was then studied to assess the benefits of mixing different pore ranges. The study concludes that pre-osteoblasts cultivated in unimodal microstructures with a pore range 106-212 μm of 36% total (actual) porosity and 300-500 μm of 55% total (actual) porosity achieved the largest extent of maturation. Bimodal microstructures comprising small (106-212 μm) and large (300-500 μm) pore ranges, distinctively distributed within the volume, and 40% (actual) porosity outperformed others, including multimodal (i.e. three or more pore ranges) and non-porous samples. They displayed a synergistic effect over the unimodal distributions. This should be a consideration in the design of scaffolds for implantation and bioengineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112026DOI Listing

Publication Analysis

Top Keywords

pore size
16
pore ranges
16
actual porosity
12
pore
9
multimodal pore
8
porosity
8
open porosity
8
total actual
8
scaffolds
5
impact multimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!