Background: Current risk models for renal cell carcinoma (RCC) based on clinicopathological factors are sub-optimal in accurately identifying high-risk patients. Here, we perform a head-to-head comparison of previously published DNA methylation markers and propose a potential prognostic model for clear cell RCC (ccRCC).
Patients And Methods: Promoter methylation of PCDH8, BNC1, SCUBE3, GREM1, LAD1, NEFH, RASSF1A, GATA5, SFRP1, CDO1, and NEURL was determined by nested methylation-specific PCR. To identify clinically relevant methylated regions, The Cancer Genome Atlas (TCGA) was used to guide primer design. Formalin-fixed paraffin-embedded (FFPE) tissue samples from 336 non-metastatic ccRCC patients from the prospective Netherlands Cohort Study (NLCS) were used to develop a Cox proportional hazards model using stepwise backward elimination and bootstrapping to correct for optimism. For validation purposes, FFPE ccRCC tissue of 64 patients from the University Hospitals Leuven and a series of 232 cases from The Cancer Genome Atlas (TCGA) were used.
Results: Methylation of GREM1, GATA5, LAD1, NEFH, NEURL, and SFRP1 was associated with poor ccRCC-specific survival, independent of age, sex, tumor size, TNM stage or tumor grade. Moreover, the association between GREM1, NEFH, and NEURL methylation and outcome was shown to be dependent on the genomic region. A prognostic biomarker model containing GREM1, GATA5, LAD1, NEFH and NEURL methylation in combination with clinicopathological characteristics, performed better compared to the model with clinicopathological characteristics only (clinical model), in both the NLCS and the validation population with a c-statistic of 0.71 versus 0.65 and a c-statistic of 0.95 versus 0.86 consecutively. However, the biomarker model had limited added prognostic value in the TCGA series with a c-statistic of 0.76 versus 0.75 for the clinical model.
Conclusion: In this study we performed a head-to-head comparison of potential prognostic methylation markers for ccRCC using a novel approach to guide primers design which utilizes the optimal location for measuring DNA methylation. Using this approach, we identified five methylation markers that potentially show prognostic value in addition to currently known clinicopathological factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094610 | PMC |
http://dx.doi.org/10.1186/s13148-021-01084-8 | DOI Listing |
Discov Oncol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.
View Article and Find Full Text PDFClin Immunol
January 2025
Department of Rheumatology, Qilu Hospital of Shandong University(Qingdao), Qingdao, China. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease linked to epigenetic changes, particularly DNA methylation. While LDLRAD4 has been implicated in RA through GWAS, its role in RA via methylation remains unclear.
Objectives: To investigate LDLRAD4 methylation patterns in RA and evaluate its potential as a diagnostic and inflammatory biomarker.
Cancer Genet
January 2025
Biology and Medical Research Unit, CNESTEN, Rabat, Morocco.
The transcription factor TWIST1 is a major regulator of Epithelial-Mesenchymal Transition, enhancing cancer cell mobility and invasive potential. Overexpression of TWIST1 is associated with tumor progression and poor prognosis. In our study, we explored the role of TWIST1 as both a prognostic biomarker and a therapeutic target in bladder cancer (BC), as well as the relationship between its promoter methylation and mRNA expression in bladder cancer patients.
View Article and Find Full Text PDFJ Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFFront Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!