Despite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested. In the brain, arterioles significantly contribute to vascular resistance and thus control of perfusion. Accordingly, pathological changes in arteriolar wall function can, therefore, limit sufficient reperfusion in ischemic stroke, but this has not yet received sufficient attention. Although an increased vascular tone after reperfusion has been demonstrated in several studies, the mechanism behind it remains to be characterized. Importantly, the majority of conventional mechanisms controlling vascular contraction failed to explain elevated cerebrovascular tone after reperfusion. We propose here that the Na,K-ATPase-dependent Src kinase activation are the key mechanisms responsible for elevation of cerebrovascular tone after reperfusion. The Na,K-ATPase, which is essential to control intracellular ion homeostasis, also executes numerous signaling functions. Under hypoxic conditions, the Na,K-ATPase is endocytosed from the membrane of vascular smooth muscle cells. This initiates the Src kinase signaling pathway that sensitizes the contractile machinery to intracellular Ca resulting in hypercontractility of vascular smooth muscle cells and, thus, elevated cerebrovascular tone that can contribute to impaired reperfusion after stroke. This mechanism integrates with cerebral edema that was suggested to underlie impaired reperfusion and is further supported by several studies, which are discussed in this article. However, final demonstration of the molecular mechanism behind Src kinase-associated arteriolar hypercontractility in stroke remains to be done.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/STROKEAHA.120.032737 | DOI Listing |
Heliyon
December 2024
Department of Public Health, University of Health Sciences, Lahore, Pakistan.
Glioblastoma (GBM) is one of the most malignant forms of cancer with the lowest survival ratio. Our study aims to utilize an integrated bioinformatic analysis to identify hub genes against GBM and explore the active phytochemicals with drug-like properties in treating GBM. The study employed databases of DisGenet, GeneCards, and Gene Expression Omnibus to retrieve GBM-associated genes, revealing 142 overlapping genes.
View Article and Find Full Text PDFInt J Med Microbiol
December 2024
Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany. Electronic address:
Allergic bronchopulmonary aspergillosis is an incurable disease caused by the environmental mold Aspergillus fumigatus. This hypersensitivity pneumonia is characterized by an inflammatory type 2 immune response, accompanied by influx of eosinophils into the lung. To investigate the mode of action of eosinophils and the signaling events triggered by A.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801.
View Article and Find Full Text PDFPharmacol Res
December 2024
Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan. Electronic address:
The large and rapid increase in the incidence and mortality of colorectal cancer (CRC) demonstrates the urgent need for new drugs with higher efficacy to treat CRC. However, the lack of applicable and reliable preclinical models significantly hinders the progress of drug development. Patient-derived xenograft (PDX) models are currently considered reliable in vivo preclinical models for predicting drug efficacy in cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!