Nanofibrous aerogels constructed by ceramic fiber components (CNFAs) feature lightweight, compressibility, and high-temperature resistance, which are superior to brittle ceramic aerogels assembled from nanoparticles. Up to now, in order to obtain CNFAs with stable framework and multifunctionality such as hydrophobicity and gas absorption, it is necessary to perform binding and surface modification processes, respectively. However, the microstructure as well as properties of CNFAs are deteriorated by the direct addition of binders and modifiers. To tackle these problems, we introduced a unique low-temperature (100 °C) chemical vapor deposition method (LTCVD) to achieve the cross-linking and hydrophobization of SiN CNFA in only one step. More importantly, during the LTCVD process, SiO coatings and nanowire arrays were in situ formed via vapor-solid (VS) and vapor-liquid-solid (VLS) mechanisms on the surface and intersection of SiN nanofibers, which cemented the aerogel framework, endowed it with hydrophobicity, and improved its oxidation resistance at high temperature. Compared to most of its counterparts, the SiN/SiO CNFA exhibited better mechanical properties, higher capability of oil/water separation (33-76 g·g), lower thermal conductivity (0.0157 W/m·K), and superior structural stability in a wide temperature range of -196-1200 °C. This work not only presents an excellent SiN/SiO CNFA for the first time but also provides fresh insights for the exquisite preparation strategy of CNFAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c05575 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
The development of affordable, intelligent dual-separation technology is crucial for the treatment of oil-water mixtures. Pyridinium-based poly(ionic liquid)s (PILs), designed using molecular theory, exhibit unique switching wettability properties, making them ideal for use in both aqueous and oily environments. By prewetting the material's surface with water or oil, the targeted separation of these components becomes feasible.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China.
Pickering emulsions (PEs) of natural plant proteins enriched in fat-soluble components are gaining consumer interest for healthier and sustainable products. The aim of this study is to prepare PEs for stabilizing almond protein isolated (API) particles loaded with astaxanthin using ultrasound technology. The loose structure of the API at pH levels of 3 and 12, with contact angles of 68.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.
View Article and Find Full Text PDFHeliyon
December 2024
Africa New Energies, UK.
The contaminated transformer oil is one of the major causes of failure in the power system. Detection and continuous monitoring of moisture content in transformer oil is required for the smooth operation of a system. In this paper, a Fractal-based Sinusoidal-shaped Capacitive Sensor (FSCS) is proposed to increase the contact area between capacitor plates and dielectric medium by 17.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology Zibo 255000 China
Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!