In this study, silicon oxide (SiO) films were deposited by remote plasma atomic layer deposition with Bis(diethylamino)silane (BDEAS) and an oxygen/argon mixture as the precursors. Oxygen plasma powers play a key role in the quality of SiO films. Post-annealing was performed in the air at different temperatures for 1 h. The effects of oxygen plasma powers from 1000 W to 3000 W on the properties of the SiO thin films were investigated. The experimental results demonstrated that the SiO thin film growth per cycle was greatly affected by the O plasma power. Atomic force microscope (AFM) and conductive AFM tests show that the surface of the SiO thin films, with different O plasma powers, is relatively smooth and the films all present favorable insulation properties. The water contact angle (WCA) of the SiO thin film deposited at the power of 1500 W is higher than that of other WCAs of SiO films deposited at other plasma powers, indicating that it is less hydrophilic. This phenomenon is more likely to be associated with a smaller bonding energy, which is consistent with the result obtained by Fourier transformation infrared spectroscopy. In addition, the influence of post-annealing temperature on the quality of the SiO thin films was also investigated. As the annealing temperature increases, the SiO thin film becomes denser, leading to a higher refractive index and a lower etch rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145387PMC
http://dx.doi.org/10.3390/nano11051173DOI Listing

Publication Analysis

Top Keywords

sio thin
28
plasma powers
20
thin films
16
oxygen plasma
12
sio films
12
thin film
12
sio
10
films
8
films deposited
8
quality sio
8

Similar Publications

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF

Laterally Excited Resonators Based on Single-Crystalline LiTaO Thin Film for High-Frequency Applications.

Micromachines (Basel)

November 2024

School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.

High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms.

View Article and Find Full Text PDF

This study introduces a novel deposition technique capable of depositing thin films with any arbitrary thickness profile. The apparatus consists of a fixed shadow mask and a rotating sample carrier plate. The shadow mask features a specifically designed opening curve that corresponds to the particular thickness profile of the deposited film.

View Article and Find Full Text PDF

Inductively coupled plasma-reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber pressure. The IGZO film showed an excellent etch rate of 83.

View Article and Find Full Text PDF

Adhesion at the interface between dissimilar materials in the semiconductor industry is an important topic, but reliable quantitative methods for strongly adhesive or highly plastic layers are hardly available. This study aims to investigate the suitability of the cross-sectional nanoindentation (CSN) method for determination of the critical energy release rate of thin film stacks in the presence of a polyimide layer as a representative structure for such a case. For this purpose, the adhesion of a deliberately weakened Si/SiO interface in a Si/SiO/Al/SiN/polyimide stack is examined by systematic variation of the experimental parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!