Oxygen vacancies (OVs) have critical effects on the photoelectric characterizations and photocatalytic activity of nanoceria, but the contributions of surface OVs on the promoted photocatalytic properties are not clear yet. In this work, we synthesized ceria nanopolyhedron (P-CeO), ceria nanocube (C-CeO) and ceria nanorod (R-CeO), respectively, and annealed them at 600 °C in air, 30%, 60% or pure H. After annealing, the surface OVs concentration of ceria elevates with the rising of H concentration. Photocatalytic activity of annealed ceria is promoted with the increasing of surface OVs, the methylene blue photodegradation ratio with pure hydrogen annealed of P-CeO, C-CeO or R-CeO is 93.82%, 85.15% and 90.09%, respectively. Band gap of annealed ceria expands first and then tends to narrow slightly with the rising of surface OVs, while the valence band (VB) and conductive band (CB) of annealed ceria changed slightly. Both of photoluminescence spectra and photocurrent results indicate that the separation efficiency of photoinduced electron-hole pairs is significantly enhanced with the increasing of the surface OVs concentration. The notable weakened recombination of photogenerated carrier is suggested to attribute a momentous contribution on the enhanced photocatalytic activity of ceria which contains surface OVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145243 | PMC |
http://dx.doi.org/10.3390/nano11051168 | DOI Listing |
J Colloid Interface Sci
January 2025
Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:
Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Life Science, Huzhou University, Huzhou 313000, China.
A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr/BiOI (Ag/BiOBr/BiOI) photocatalysts with varying Ag loading levels were synthesized via the solvothermal-photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr/BiOI semiconductor surface and the performance of Ag/BiOBr/BiOI photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China. Electronic address:
To enhance the activity of the nitrate reduction reaction (NORR), the development of oxygen vacancies electrocatalysts is a promising approach for improving the efficiency of ammonia synthesis. However, the mechanism by which oxygen vacancies regulate NORR to ammonia remains poorly understood. In this study, a series of CoO/FeO composite catalysts derived from ZIF-67 containing oxygen vacancies (OVs) were synthesized to elucidate the role of OVs on the activity and selectivity of ammonia synthesis.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
In semiconductor catalysts, rational doping of nonmetallic elements holds significant scientific and technological importance for enhancing photocatalytic performance. Here, using a one-step hydrothermal technique, we synthesized iodine-doped BiOCl composite and evaluated the impact of iodine doping on its photocatalytic capability for organic dye degradation under visible light irradiation. In this study, we demonstrate that the introduction of iodide ions not only provides an ideal built-in electric field (BIEF) for BiOCl but also induces the generation of additional oxygen vacancies (OVs).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address:
Photocatalytic technology provides a new approach for the harmless treatment of low concentration NO in the atmosphere. The development of high-performance semiconductor materials to improve the light absorption efficiency and the separation efficiency of photogenerated carriers is the focus of the research. Bismuth oxybismuth sulfate (BiOSO) shows significant potential for photocatalytic NO purification due to its unique electronic and layered structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!