Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study evaluated the relationship among palatability attributes, volatile compounds, and fatty acid (FA) profiles in meat from barley, corn, and blended (50:50, barley and corn) grain-fed steers. Multiple correspondence analysis with three dimensions (Dim) explained 62.2% of the total variability among samples. The Dim 1 and 2 (53.3%) separated pure from blended grain-fed beef samples. Blended grain beef was linked to a number of volatiles including (E,E)-2,4-decadienal, hexanal, 1-octen-3-ol, and 2,3-octanedione. In addition, blended grain-fed beef was linked to fat-like and rancid flavors, stale-cardboard, metallic, cruciferous, and fat-like aroma descriptors, and negative categories for flavor intensity (FI), off-flavor, and tenderness. A possible combination of linoleic and linolenic acids in the blended diet, lower rumen pH, and incomplete biohydrogenation of blended grain-fed polyunsaturates could have increased ( ≤ 0.05) long-chain n-6 fatty acids (LCFA) in blended grain-fed beef, leading to more accumulation of FA oxidation products in the blended than in barley and corn grain-fed meat samples. The Dim 3 (8.9%) allowed corn separation from barley grain beef. Barley grain-fed beef was mainly linked to alkanes and beef positive FI, whereas corn grain-fed beef was associated with pyrazines, in addition to aldehydes related to n-6 LCFA oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146225 | PMC |
http://dx.doi.org/10.3390/foods10050977 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!