In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone-chitosan-alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH) was 37.7 KJ mol for CR and 8.71 KJ mol for BG, while the entropy change (ΔS) was 89.1 J K mol for CR and 79.1 J K mol BG, indicating that the adsorption process was endothermic and spontaneous in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124385 | PMC |
http://dx.doi.org/10.3390/molecules26092586 | DOI Listing |
Sci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).
View Article and Find Full Text PDFACS Nano
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:
Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:
Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!