Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8-26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, and deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145198 | PMC |
http://dx.doi.org/10.3390/plants10050895 | DOI Listing |
Mol Breed
March 2024
Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 Japan.
Unlabelled: Cleistogamy or closed flowering is a widely used trait in barley () breeding because it reduces the risk of fungal infection in florets at anthesis. Cleistogamy in barley is caused by a point mutation within the microRNA172 (miR172) target site of the gene, which encodes the Apetala2 (AP2) transcription factor. Because cleistogamy is not apparent in cultivars of hexaploid wheat (), a strategy to develop cleistogamous wheat was proposed by inducing point mutations in all three homoeologs, which are the wheat orthologs of barley .
View Article and Find Full Text PDFPlant J
May 2024
Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Seeland, OT Gatersleben, Germany.
Hybrid breeding is a promising strategy to quickly improve wheat yield and stability. Due to the usefulness of the Rht 'Green Revolution' dwarfing alleles, it is important to gain a better understanding of their impact on traits related to hybrid development. Traits associated with cross-pollination efficiency were studied using Near Isogenic Lines carrying the different sets of alleles in Rht genes: Rht1 (semi-dwarf), Rht2 (semi-dwarf), Rht1 + 2 (dwarf), Rht3 (extreme dwarf), Rht2 + 3 (extreme dwarf), and rht (tall) during four growing seasons.
View Article and Find Full Text PDFTheor Appl Genet
July 2022
Department of Plant Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types.
View Article and Find Full Text PDFTheor Appl Genet
June 2022
Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria.
The effect of the Rht1-genes on FHB resistance depends on anther extrusion and level of background resistance. Qfhs.ifa-5A increases resistance and anther extrusion as efficiently as semi-dwarfing alleles decrease it.
View Article and Find Full Text PDFPlants (Basel)
February 2022
International Center for Agricultural Research in the Dry Areas, Rue Hafiane Cherkaoui, Rabat-Institutes, Rabat B.P. 6299, Morocco.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!