Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurofeedback of real-time functional magnetic resonance imaging (rtfMRI) can enable people to self-regulate motor-related brain regions and lead to alteration of motor performance and functional connectivity (FC) underlying motor execution tasks. Numerous studies suggest that FCs dynamically fluctuate over time. However, little is known about the impact of neurofeedback training of the motor-related region on the dynamic characteristics of FC underlying motor execution tasks. This study aims to investigate the mechanism of self-regulation of the right premotor area (PMA) on the underlying dynamic functional network connectivity (DFNC) of motor execution (ME) tasks and reveal the relationship between DFNC, training effect, and motor performance. The results indicate that the experimental group spent less time on state 2, with overall weak connections, and more time on state 6, having strong positive connections between motor-related networks than the control group after the training. For the experimental group's state 2, the mean dwell time after the training showed negative correlation with the tapping frequency and the amount of upregulation of PMA. The findings show that rtfMRI neurofeedback can change the temporal properties of DFNC, and the DFNC changes in state with overall weak connections were associated with the training effect and the improvement in motor performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147082 | PMC |
http://dx.doi.org/10.3390/brainsci11050582 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!