Dislocations often occur in thin films with large misfit strain as a result of strain energy accumulation and can drastically change the film properties. Here the structure and dislocations in oxide heterostructures with large misfit strain are investigated on atomic scale. When grown on SrTiO(001), the dislocations in both the monolithic BaTiOthin film and its superlattices with SrIrOappear above a critical thickness around 6 nm. The edge component of the dislocations is seen in both cases with the Burgers vector of⟨100⟩. However, compared to monolithic BaTiO, the dislocation density is slightly lower in BaTiO/SrIrOsuperlattices. In the superlattice, when considering the SrTiOlattice constant as the reference, BaTiOhas a larger misfit strain comparing with SrIrO. It is found that in both cases, the formation of dislocation is only affected by the critical thickness of the film with larger lattice misfit (BaTiO), regardless of the existence of a strong octahedral tilt/rotation mismatch at BaTiO/SrIrOinterface. Our findings suggest that it is possible to control the position of dislocations, an important step toward defect engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/abfdf1 | DOI Listing |
Phys Chem Chem Phys
January 2025
CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
The influence on the mobility of polypeptide chains caused by strain misfit due to molecular electric dipole distortions under applied electric fields up to 769 kV m, in cow cortical femur samples annealed at 373 K, 423 K, and 530 K, is determined. The behaviour of strain misfit as a function of the electric field strength is determined from a mean-field model based on the Eshelby theory. In addition, Friedel's model for describing the mobility of dislocations in continuum media has been modified to determine the interaction energy between electrically generated obstacles and the polypeptide chains.
View Article and Find Full Text PDFiScience
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, P.R. China.
A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.
View Article and Find Full Text PDFNanotechnology
December 2024
School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!