Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography.

Comput Biol Med

Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain. Electronic address:

Published: June 2021

Background: Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system, especially the brain, spinal cord, and optic nerve. Diagnosis of this disease is a very complex process and generally requires a lot of time. In addition, treatments are applied without any information on the disability course in each MS patient. For these two reasons, the objective of this study was to improve the MS diagnosis and predict the long-term course of disability in MS patients based on clinical data and retinal nerve fiber layer (RNFL) thickness, measured by optical coherence tomography (OCT).

Material And Methods: A total of 104 healthy controls and 108 MS patients, 82 of whom had a 10-year follow-up, were enrolled. Classification algorithms such as multiple linear regression (MLR), support vector machines (SVM), decision tree (DT), k-nearest neighbours (k-NN), Naïve Bayes (NB), ensemble classifier (EC) and long short-term memory (LSTM) recurrent neural network were tested to develop two predictive models: MS diagnosis model and MS disability course prediction model.

Results: For MS diagnosis, the best result was obtained using EC (accuracy: 87.7%; sensitivity: 87.0%; specificity: 88.5%; precision: 88.7%; AUC: 0.8775). In line with this good performance, the accuracy was 85.4% using k-NN and 84.4% using SVM. And, for long-term prediction of MS disability course, LSTM recurrent neural network was the most appropriate classifier (accuracy: 81.7%; sensitivity: 81.1%; specificity: 82.2%; precision: 78.9%; AUC: 0.8165). The use of MLR, SVM and k-NN also showed a good performance (AUC ≥ 0.8).

Conclusions: This study demonstrated that machine learning techniques, using clinical and OCT data, can help establish an early diagnosis and predict the course of MS. This advance could help clinicians select more specific treatments for each MS patient. Therefore, our findings underscore the potential of RNFL thickness as a reliable MS biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104416DOI Listing

Publication Analysis

Top Keywords

disability course
12
machine learning
8
multiple sclerosis
8
optical coherence
8
coherence tomography
8
diagnosis predict
8
rnfl thickness
8
lstm recurrent
8
recurrent neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!