Dopamine (DA) in the striatum is essential to influence motor behavior and may lead to movement impairment in Parkinson's disease (PD). The present study examined the different functions of the DA D1 receptor (D1R) and DA D2 receptor (D2R) by intrastriatal injection of the D1R agonist SKF38393 and the D2R agonist quinpirole in 6-hydroxydopamine (6-OHDA)-lesioned and control rats. All rats separately underwent dose-response behavior testing for SKF38393 (0, 0.5, 1.0, and 1.5 μg/site) or quinpirole (0, 1.0, 2.0, and 3.0 μg/site) to determine the effects of the optimal modulating threshold dose. Two behavior assessment indices, the time of latency to fall and the number of steps on a rotating treadmill, were used as reliable readouts of motor stimulation variables for quantifying the motor effects of the drugs. The findings indicate that at threshold doses, SKF38393 (1.0 μg/site) and quinpirole (1.0 μg/site) produce a dose-dependent increase in locomotor activity compared to vehicle injection. The ameliorated behavioral responses to either SKF38393 or quinpirole in lesioned rats were greater than those in unlesioned control rats. Moreover, the dose-dependent increase in locomotor capacity for quinpirole was greater than that for SKF38393 in lesioned rats. These results can clarify several key issues related to DA receptors directly and may provide a basis for exploring the potential of future selective dopamine therapies for PD in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2021.113339 | DOI Listing |
Exp Neurol
December 2024
Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan. Electronic address:
Background: Intracerebral hemorrhage (ICH) is associated with a large hematoma that causes compression, increased intracranial pressure (IICP), midline shift, and brain herniation, and may ultimately lead to death. Urgent surgical removal of the large hematoma can ameliorate these injuries, which would be life-saving, but has not improved clinical outcome. A suitable animal model that mimics the clinically relevant human severe ICH injury requiring surgical hematoma evacuation is urgently needed.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
Front Dement
October 2024
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Int J Mol Sci
September 2024
Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation.
View Article and Find Full Text PDFα-synuclein accumulation is recognized as a prominent feature in the majority of Parkinson's disease cases and also occurs in a broad range of neurodegenerative disorders including Alzheimer's disease. It has been shown that α-synuclein can spread from a donor cell to neighboring cells and thus propagate cellular damage, antagonizing the effectiveness of therapies such as transplantation of fetal or iPSC derived dopaminergic cells. As we and others previously have shown, insufficient lysosomal function due to genetic mutations or targeted disruption of cathepsin D can cause α-synuclein accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!