AI Article Synopsis

  • Researchers are studying the immune response to SARS-CoV-2, focusing on T cell immunity and its relationship with seasonal coronaviruses.
  • A significant immune response was identified in COVID-19 survivors related to the nucleocapsid (N) protein, which was also present in people who had not been exposed to the virus.
  • T cell cross-reactivity to other coronaviruses was observed, showing possible long-lasting immunity, driven by specific T cell receptor characteristics.

Article Abstract

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7 COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3β loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043652PMC
http://dx.doi.org/10.1016/j.immuni.2021.04.006DOI Listing

Publication Analysis

Top Keywords

seasonal coronaviruses
12
immunodominant sars-cov-2
8
immunodominant response
8
cd8 t cells
4
t cells specific
4
immunodominant
4
specific immunodominant
4
sars-cov-2
4
sars-cov-2 nucleocapsid
4
nucleocapsid epitope
4

Similar Publications

Introduction: Pediatric coronavirus disease 2019 (COVID-19) vaccination rates in the United States remain lower compared with adults. We aimed to (1) implement a quality improvement initiative to increase COVID-19 vaccination 2-fold in hospitalized patients 12-21 years of age from 4.7% during the baseline period (August 10, 2021-November 1, 2021) to 9.

View Article and Find Full Text PDF

Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate effective prevention and control measures, this study leveraged time-series data on brucellosis cases from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive modeling techniques-Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks-were employed for long-term forecasting.

View Article and Find Full Text PDF

Disruption of seasonal influenza circulation and evolution during the 2009 H1N1 and COVID-19 pandemics in Southeastern Asia.

Nat Commun

January 2025

School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.

East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.

View Article and Find Full Text PDF

A historical perspective of more than one hundred years of influenza surveillance in New York State demonstrates the progression from anecdotes and case counts to next-generation sequencing and electronic database management, greatly improving pandemic preparedness and response. Here, we determined if influenza virologic surveillance at the New York State public health laboratory (NYS PHL) tests sufficient specimen numbers within preferred confidence limits to assess situational awareness and detect novel viruses that pose a pandemic risk. To this end, we analyzed retrospective electronic data on laboratory test results for the influenza seasons 1997-1998 to 2021-2022 according to sample sizes recommended in the Influenza Virologic Surveillance Right Size Roadmap issued by the Association of Public Health Laboratories and Centers for Disease Control and Prevention.

View Article and Find Full Text PDF

Respiratory Syncytial Virus and Other Respiratory Viruses in Hospitalized Infants During the 2023-2024 Winter Season in Mexico.

Viruses

December 2024

Infectious Diseases Laboratory, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico.

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in young children. During the COVID-19 pandemic, a significant change in the epidemiology of RSV and other viruses occurred worldwide, leading to a reduction in the circulation of these infectious agents. After the pandemic, the resurgence of seasonal respiratory viruses occurred, but some features of these infections contrast to those registered prior to the pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!