Bone morphogenetic protein-9 (BMP-9) has been shown to potently induce osteoblastic differentiation of periodontal ligament fibroblasts (PDLFs) and may be a candidate therapeutic agent for periodontal tissue healing/regeneration, but the effect of the inflammatory environment of periodontitis on such approaches is unclear. We investigated whether interleukin-1β (IL-1β) affected BMP-9-mediated osteoblastic differentiation of human (h) PDLFs. IL-1β suppressed BMP-9-induced osteogenic differentiation of hPDLFs, as evidenced by reduced alkaline phosphatase (ALP) activity and mineralization, and the downregulated expression of BMP-9-mediated bone-related genes, RUNX2, SP7, IBSP, and SPP1. In hPDLFs, with or without BMP-9, IL-1β increased the protein expression of activin A, a BMP-9 antagonist, and decreased follistatin protein, an antagonist of activin A. Similarly, IL-1β upregulated the expression of the activin A gene and downregulated that of the follistatin gene. Notably, follistatin re-established BMP-9-induced ALP activity suppressed by IL-1β. Activin A inhibited the expression of BMP-9-responsive genes and BMP-9-induced ALP activity, while follistatin re-established them. Finally, extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factor-kappa B (NF-κB) inhibition significantly blocked IL-1β-induced activin A gene expression. Our data indicate that IL-1β inhibits BMP-9-induced osteoblastic differentiation of hPDLFs, possibly by promoting activin A production via the ERK1/2, p38, and NF-κB pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eos.12792DOI Listing

Publication Analysis

Top Keywords

osteoblastic differentiation
16
alp activity
12
bone morphogenetic
8
differentiation human
8
periodontal ligament
8
ligament fibroblasts
8
differentiation hpdlfs
8
expression activin
8
activin gene
8
follistatin re-established
8

Similar Publications

Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.

View Article and Find Full Text PDF

Surgical management of an extensive nasal mass in an adolescent: insights from diagnostic imaging and histopathology.

J Surg Case Rep

January 2025

Department of Research, Universidad Francisco Marroquín, 13 av, Guatemala City 01011, Guatemala.

A 17-year-old female presented with a mass in the right nasal fossa and eye protrusion. Imaging revealed a large osseous mass originating from the right turbinates, causing exophthalmos without tissue invasion. A partial resection via the Caldwell-Luc approach was performed, but hemodynamic instability halted the procedure, leaving a residual mass.

View Article and Find Full Text PDF

Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.

View Article and Find Full Text PDF

Craniofacial bone defect healing in periodontitis patients with diabetes background has long been difficult due to increased blood glucose levels which cause overproduction of reactive oxygen species (ROS) and a low pH environment. These conditions negatively affect the function of macrophages, worsen inflammation and oxidative stress, and ultimately, hinder osteoblasts' bone repair potential. In this study, we for the first time found that ANXA1 expression in macrophages was reduced in a diabetic periodontitis environment, with the activation of the NLRP3/Caspase-1/GSDMD signaling pathway, and, eventually, increased macrophage pyroptosis.

View Article and Find Full Text PDF

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!