The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-β-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2021.1921042 | DOI Listing |
J Oral Biol Craniofac Res
January 2025
Department of Periodontics, Vivekanandha Dental College for Women, India.
Background And Objective: Periodontitis and dental caries are among the most prevalent oral diseases, with chronic periodontitis being a multifactorial, infectious condition that leads to inflammation in the supporting structures of the teeth, progressive attachment loss, and bone resorption. Chronic periodontitis is driven by a consortium of pathogenic microorganisms. This study aimed to evaluate the efficacy of virgin coconut oil (VCO) pulling in reducing the microbial load and inflammatory mediators responsible for chronic periodontitis, in comparison to chlorhexidine (CHX) mouthwash and distilled water.
View Article and Find Full Text PDFAccess Microbiol
January 2025
Department of Biological Sciences, The George Washington University, Washington DC 20052, USA.
Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States.
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.
View Article and Find Full Text PDFBiofilm
June 2025
Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.
Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
SSM- School for Advanced Studies Via Mezzocannone 4, Naples 80138, Italy.
This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!