To improve thermal barrier applications in advanced vehicle engines, a novel Fe-based amorphous composite coating was designed by introducing ceramic oxides and was prepared by atmospheric plasma spraying (APS). The microstructure and related properties of the as-deposited coating were investigated in detail. The composite coating comprises a well-formed FeCrNbBSi amorphous metallic matrix and dispersed yttria-stabilized zirconia (YSZ) splats. A unique Si-oxide interfacial layer with a thickness of several nanometers and an amorphous structure forms between the metallic matrix and ceramic phase, which is attributed to a combination of multiple effects. The composite coating displays extremely low thermal conductivity from 2.28 W/mK at 100 °C to 3.36 W/mK at 600 °C and can increase the surface temperature of the piston crown by 18.93 °C, which implies a significant means of enhancing the power efficiency. The improved thermal barrier ability of the composite coating is revealed as the crucial effect of the Si-oxide interfacial layer, which induces an increased interfacial thermal resistance. The fracture toughness of the composite coating remains at 3.40 MPa·m, comparable to that of the monolithic amorphous coating, 3.74 MPa·m, which is closely related to the formation of a Si-oxide layer and its nanoscale thickness. Therefore, the Fe-based amorphous composite coating developed here demonstrates great potential as an innovative metal-based thermal barrier coating for application in vehicle engines and provides specific inspiration for future works exploring the interfacial engineering of coating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c22868 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Environment and Chemical Engineering, Dalian University Dalian 116622 Liaoning P. R. China
Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFMed Devices (Auckl)
January 2025
Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Jawa Barat, 45363, Indonesia.
Background: Biomarkers are essential tools for diagnosing diseases. Saliva, as a human fluid, effectively reflects the body's condition due to its rich composition. Analyzing saliva components allows for noninvasive, cost-effective, and time-efficient screening and diagnosis.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
Dielectric nanocomposites have garnered significant interest owing to their potential applications in energy storage. However, achieving high energy density (U) and charge/discharge efficiency (η) remains a challenge in their fabrication. In this paper, core-shell structured BaTiO@Polyvinylpyrrolidone (BT@PVP) nanoparticles are prepared, and incorporated into a semi-crystalline polyvinylidene fluoride (PVDF) matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!