In this chapter, we review methods for video-based heart monitoring, from classical signal processing approaches to modern deep learning methods. In addition, we propose a new method for learning an optimal filter that can overcome many of the problems that can affect classical approaches, such as light reflection and subject's movements, at a fraction of the training cost of deep learning approaches. Following the usual procedures for region of interest extraction and tracking, robust skin color estimation and signal pre-processing, we introduce a least-squares error optimal filter, learnt using an established training dataset to estimate the photoplethysmographic (PPG) signal more accurately from the measured color changes over time. This method not only improves the accuracy of heart rate measurement but also resulted in the extraction of a cleaner pulse signal, which could be integrated into many other useful applications such as human biometric recognition or recognition of emotional state. The method was tested on the DEAP dataset and showed improved performance over the best previous classical method on that dataset. The results obtained show that our proposed contact-free heart rate measurement method has significantly improved on existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-61125-5_10DOI Listing

Publication Analysis

Top Keywords

pulse signal
8
deep learning
8
optimal filter
8
heart rate
8
rate measurement
8
signal
5
method
5
contact-free pulse
4
signal extraction
4
extraction human
4

Similar Publications

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

In this Letter, we propose a high-performance optimized detection scheme based on a neural network (NN) in a receiver digital signal processing (DSP) for bandwidth-limited intensity modulation and direct detection (IM/DD) transmission systems. The NN-based optimized detection scheme consists of two components, an NN-based lookup table (NN-LUT) and an NN-based log-maximum estimation with a fixed number of surviving state (NN-MAP) decoder. The NN-LUT provides more accurate and sufficient information (PI) to the decoder than the conventional filter-form PI without increasing computational complexity.

View Article and Find Full Text PDF

Mid-to-far-infrared (IR) spectral content is recorded using the novel self-balanced and self-phase-corrected electro-optical (EO) sampling arrangement. Self-balancing guarantees that the electric field emerging from the EO crystal yields a signal of zero via a Wollaston prism and balanced photodetector (i.e.

View Article and Find Full Text PDF

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

This Letter reports what we believe to be a novel schlieren approach with adaptive temporal resolution. The fundamental concept of this approach is to fuse an event-based camera and a low-speed frame-based camera to generate high-frame-rate videos by leveraging the strengths of both. Using a novel experimental setup, events and frames are accurately aligned in both space and time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!