Motivation: Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function.

Results: MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers.

Availability And Implementation: MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btab249DOI Listing

Publication Analysis

Top Keywords

fusion
6
metafusion
5
metafusion high-confidence
4
high-confidence metacaller
4
metacaller filtering
4
filtering prioritizing
4
prioritizing rna-seq
4
rna-seq gene
4
gene fusion
4
fusion candidates
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Background: Robotic assistance has become increasingly prevalent in spinal surgery in recent years, emerging as a tool to increase accuracy and precision and lower complication rates and radiation exposure. The 7 and 8 Annual Seattle Science Foundation (SSF) Robotics Courses showcased presentations and demonstrations from some of the field's most experiences leaders on latest topics in robotics and spinal surgery, including cutting-edge preoperative planning technologies, augmented reality (AR) in the operating room, cervical fusion with transpedicular screws, and neuro-oncologic management. We provide a scoping review of the use of robotics technology in spinal surgery featuring highlights from the 7 and 8 Annual SSF Robotics Courses.

View Article and Find Full Text PDF

Background: It has been more than a decade since fusion prostate biopsy (FPB) has been used in the diagnosis of prostate cancer (PCa). Therefore, patients with a previous history of negative FPB and ongoing suspicion of PCa are beginning to emerge. This study investigated whether the first biopsy type (standard or fusion) should be effective in deciding on a second biopsy.

View Article and Find Full Text PDF

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Background: Robotic-assisted spinal surgery has reportedly improved the accuracy of instrumentation with smaller incisions, improving surgical outcomes and reducing hospital stay. However, robot-assisted spine surgery has thus far been confined to placement of pedicle screw instrumentation only. This pilot study aims to explore the feasibility of utilizing the Mazor™ X Stealth Edition (Medtronic, Sofamor Danek USA), robotic-arm platform in the minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) procedure inclusive of interbody cage placement, in our institution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!