The dependency of the surface free energy (SFE) of diamond nanocrystals on particle size was studied by means of molecular dynamics (MD) and DFT simulations. It was demonstrated how to avoid the ambiguities in calculating the surface area of very small crystallites by expressing the particle size in terms of the number of atoms which we called the number of atoms convention (NAC) rather than in units of length. The NAC method was applied to a set of models terminated with either (100) or (111) crystal faces. The MD simulations were done for two widely used potentials, i.e. Tersoff and AIREBO. Both potentials show appreciable changes in surface free energy with decreasing crystal size but in opposite directions. In the limit of an infinite crystal both tested potentials give the energy of the (100) surface to be more than two times higher than that of the (111) surface. Also the absolute figures calculated from the AIREBO potential are twice larger than those from the Tersoff potential. DFT simulations of the selected small particles confirmed the MD calculations based on the AIREBO results for the (111) surface but for the (100) surface the values were considerably smaller.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp00282a | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.
View Article and Find Full Text PDFBioinform Adv
December 2024
Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.
Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.
Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.
Cell Biosci
January 2025
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
Background: Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors.
View Article and Find Full Text PDFSci Rep
January 2025
Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
Previous research indicates that Transforming growth factor beta-3 (TGFβ3) expression levels correlate with breast cancer metastasis, and elevated TGFβ3 levels have been linked with poor overall survival in breast cancer patients. The study used computational methods to examine curcumin's effects on TGFβ3, a chemical with antiviral and anticancer characteristics. The curcumin has low Molecular Weight 368.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!