Although fluorescence sensors based on carbon dots (CDs) have been developed widely, multicomponent detection using CDs without extra and tedious surface modification remains a challenge. Here, the crude carbon nanoparticles (CPs) as a fluorescence sensor were prepared through one-pot hydrothermal process using orange peel as the precursor. The method was simple, rapid, economical, and eco-friendly given that such extra steps as dialysis and lyophilization were not required. By adding ethanol into the reaction solvent, the fluorescence properties of orange-peel-derived CPs as well as their sensitivity of detecting Fe with a limit of detection of 0.25 μM were improved. Additionally, orange-peel-derived CPs could be used as a fluorescence sensor for detection of ascorbic acid (AA) with a LOD of 5 μM. More importantly, the proposed fluorescence methods were successfully used to qualitatively and quantitatively analyze Fe and AA in real samples. Recovery of Fe from tap water was within the range 97.2-105.4%. Conversely, recovery of AA from vitamin C tablets and orange juices laid within the ranges 97.7-99.3% and 93.2-97.6%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4064DOI Listing

Publication Analysis

Top Keywords

carbon nanoparticles
8
detection ascorbic
8
ascorbic acid
8
cps fluorescence
8
fluorescence sensor
8
orange-peel-derived cps
8
fluorescence
5
simple eco-friendly
4
eco-friendly synthesis
4
synthesis crude
4

Similar Publications

Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.

View Article and Find Full Text PDF

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O Batteries.

ACS Nano

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

A novel and high-performance tumor inhibitor of La, N co-doped carbon dots for U251 and LN229 cells.

Colloids Surf B Biointerfaces

January 2025

Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:

To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!