Resting-state fMRI (rs-fMRI) detects functional connectivity (FC) abnormalities that occur in the brains of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). FC of the default mode network (DMN) is commonly impaired in AD and MCI. We conducted a systematic review aimed at determining the diagnostic power of rs-fMRI to identify FC abnormalities in the DMN of patients with AD or MCI compared with healthy controls (HCs) using machine learning (ML) methods. Multimodal support vector machine (SVM) algorithm was the commonest form of ML method utilized. Multiple kernel approach can be utilized to aid in the classification by incorporating various discriminating features, such as FC graphs based on "nodes" and "edges" together with structural MRI-based regional cortical thickness and gray matter volume. Other multimodal features include neuropsychiatric testing scores, DTI features, and regional cerebral blood flow. Among AD patients, the posterior cingulate cortex (PCC)/Precuneus was noted to be a highly affected hub of the DMN that demonstrated overall reduced FC. Whereas reduced DMN FC between the PCC and anterior cingulate cortex (ACC) was observed in MCI patients. Evidence indicates that the nodes of the DMN can offer moderate to high diagnostic power to distinguish AD and MCI patients. Nevertheless, various concerns over the homogeneity of data based on patient selection, scanner effects, and the variable usage of classifiers and algorithms pose a challenge for ML-based image interpretation of rs-fMRI datasets to become a mainstream option for diagnosing AD and predicting the conversion of HC/MCI to AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127155 | PMC |
http://dx.doi.org/10.1002/hbm.25369 | DOI Listing |
Alzheimers Dement
December 2024
University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.
Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.
Alzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Numerous drugs (including disease-modifying therapies, cognitive enhancers and neuropsychiatric treatments) are being developed for Alzheimer's and related dementias (ADRD). Emerging neuroimaging modalities, and genetic and other biomarkers potentially enhance diagnostic and prognostic accuracy. These advances need to be assessed in real-world studies (RWS).
View Article and Find Full Text PDFSemin Ophthalmol
January 2025
Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, NJ, USA.
Purpose: To characterize the epidemiology of consumer product-related ocular injury in the United States (US) incarcerated population, and identify preventable causes.
Methods: The National Electronic Injury Surveillance System (NEISS) database was queried for cases of eye injury from 2014 to 2023. Incarcerated cases were identified using the keywords "prison", "jail", "inmate", and "incarcerate".
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Structural and functional heterogeneity in the brains of patients with Alzheimer's disease (AD) leads to diagnostic and prognostic uncertainty and confounds clinical treatment planning. Normative modelling, where individual-level deviations in brain measures from a reference sample are computed to infer personalized effects of disease, allows parsing of disease heterogeneity. In this study, GAN based normative modelling technique quantifies individual level neuroanatomical abnormality thereby facilitating measurement of personalized disease related effects in AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!