The Translational Machine (TM) is a machine learning (ML)-based analytic pipeline that translates genotypic/variant call data into biologically contextualized features that richly characterize complex variant architectures and permit greater interpretability and biological replication. It also reduces potentially confounding effects of population substructure on outcome prediction. The TM consists of three main components. First, replicable but flexible feature engineering procedures translate genome-scale data into biologically informative features that appropriately contextualize simple variant calls/genotypes within biological and functional contexts. Second, model-free, nonparametric ML-based feature filtering procedures empirically reduce dimensionality and noise of both original genotype calls and engineered features. Third, a powerful ML algorithm for feature selection is used to differentiate risk variant contributions across variant frequency and functional prediction spectra. The TM simultaneously evaluates potential contributions of variants operative under polygenic and heterogeneous models of genetic architecture. Our TM enables integration of biological information (e.g., genomic annotations) within conceptual frameworks akin to geneset-/pathways-based and collapsing methods, but overcomes some of these methods' limitations. The full TM pipeline is executed in R. Our approach and initial findings from its application to a whole-exome schizophrenia case-control data set are presented. These TM procedures extend the findings of the primary investigation and yield novel results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/gepi.22383 | DOI Listing |
Arch Bronconeumol
December 2024
National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
Gene
January 2025
Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350011 Fujian Province, PR China. Electronic address:
Background: T cell senescence affects non-small cell lung cancer (NSCLC) by compromising the anti-tumor immune response. However, the prognostic significance of T cell senescence-related genes in NSCLC remains unclear.
Methods: The scRNA-seq data from normal lung and NSCLC tissues, along with co-incubation experiments involving NSCLC cells and T cells, were utilized to identify T cell senescence characteristics.
Int J Cardiol
January 2025
Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. Electronic address:
J Chromatogr A
December 2024
Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:
Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.
View Article and Find Full Text PDFClin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!