Highly expressed enhancer of zeste homolog 2 (EZH2) has been associated with many kinds of cancers and other diseases, while its functional role in asthma is largely unknown. In our study, we investigated the molecular mechanism of EZH2 in the development of asthma. An ovalbumin-induced mouse asthma model was established, followed by injection of short hairpin RNA (sh)-EZH2, overexpression-B-cell translocation gene 2 (oe-BTG2), microRNA (miR)-34b agomir as well as their corresponding controls. Next, primary bronchial epithelial cells were isolated and cultured, followed by treatment of oe-FOXO3, miR-34b inhibitor, sh-EZH2, oe-BTG2, and corresponding controls. The effects of EZH2 on inflammation were evaluated by determining levels of inflammatory factors interleukin (IL)-4, IL-5, IL-13, IL-17, and protein levels of transforming growth factor β, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1. The interactions between EZH2 and forkhead box O3 (FOXO3), between FOXO3 and miR-34b promoter, and between miR-34b and BTG2 were analyzed by conducting dual-luciferase reporter and chromatin immunoprecipitation assays. Notably, EZH2 and BTG2 were significantly overexpressed, while FOXO3 and miR-34b were obviously underexpressed in asthma. EZH2 silencing led to inhibited inflammation though upregulation of FOXO3, which could bind to the miR-34b promoter and facilitate its expression. In turn, miR-34b reduced BTG2 expression by targeting its 3'untranslated region. Our study provides evidence that EZH2 promotes asthma progression by regulating the FOXO3-miR-34b-BTG2 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41374-021-00585-7 | DOI Listing |
Cancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Sarcoma Unit, The Royal Marsden Hospital and Institute of Cancer Research, London SW3 6JZ, UK.
There has been noteworthy progress in molecular characterisation and therapeutics in soft tissue sarcomas. Novel agents have gained regulatory approval by the FDA. Examples are the tyrosine kinase inhibitors avapritinib and ripretinib in gastrointestinal stromal tumours (GIST), the immune check point inhibitor atezolizumab in alveolar soft part tissue sarcoma, the γ-secretase inhibitor nirogacestat in desmoid tumours, the NTRK inhibitors larotrectinib and entrectinib in tumours with fusions, the mTOR inhibitor nab-sirolimus in PEComa, and the EZH-2 inhibitor tazemetostat in epithelioid sarcoma.
View Article and Find Full Text PDFDifferentiation of antigen-activated B cells into pro-proliferative germinal center (GC) B cells depends on the activity of the transcription factors MYC and BCL6, and the epigenetic writers DOT1L and EZH2. GCB-like Diffuse Large B Cell Lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Department of Orthopedic Surgery, University of California Davis, Sacramento, CA, 95817, USA.
High-grade soft tissue sarcomas (STS) are a heterogeneous and aggressive set of cancers. Failure to respond anthracycline chemotherapy, standard first-line treatment, is associated with poor outcomes. We investigated the contribution of STS cancer stem cells (STS-CSCs) to doxorubicin resistance.
View Article and Find Full Text PDFMethods
January 2025
Department of Geriatrics, Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China. Electronic address:
The EZH2 expression shows significantly associated with immunotherapeutic resistance in several tumors. A comprehensive analysis of the predictive values of EZH2 for immune checkpoint blockade (ICB) effectiveness in uveal melanoma (UM) remains unclear. We analyzed UM data from The Cancer Genome Atlas (TCGA) database, identified 888 differentially expressed genes (DEGs) associated with EZH2 expression, then conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses to elucidate biological features of EZH2 in UM assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!