Abnormal accumulation of hyperphosphorylated tau induces pathogenesis in neurodegenerative diseases, like Alzheimer's disease. Molecular chaperones with peptidyl-prolyl cis/trans isomerase (PPIase) activity are known to regulate these processes. Previously, in vitro studies have shown that the 52 kDa FK506-binding protein (FKBP52) interacts with tau inducing its oligomerization and fibril formation to promote toxicity. Thus, we hypothesized that increased expression of FKBP52 in the brains of tau transgenic mice would alter tau phosphorylation and neurofibrillary tangle formation ultimately leading to memory impairments. To test this, tau transgenic (rTg4510) and wild-type mice received bilateral hippocampal injections of virus overexpressing FKBP52 or GFP control. We examined hippocampal-dependent memory, synaptic plasticity, tau phosphorylation status, and neuronal health. This work revealed that rTg4510 mice overexpressing FKBP52 had impaired spatial learning, accompanied by long-term potentiation deficits and hippocampal neuronal loss, which was associated with a modest increase in total caspase 12. Together with previous studies, our findings suggest that FKBP52 may sensitize neurons to tau-mediated dysfunction via activation of a caspase-dependent pathway, contributing to memory and learning impairments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093247 | PMC |
http://dx.doi.org/10.1038/s41514-021-00062-x | DOI Listing |
Alzheimers Dement
December 2024
Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Introduction: Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for several neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD). The C-terminal (CT) domain of TMEM106B occurs as fibrillar protein deposits in the brains of dementia patients.
Methods: To determine the TMEM CT aggregation propensity and neurodegenerative potential, we generated transgenic Caenorhabditis elegans expressing the human TMEM CT fragment aggregating in FTLD cases.
Acta Neuropathol Commun
December 2024
Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Pharmacology & Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler Room 1210, Montreal, H3G 1Y6, Canada.
The combination of amyloid beta and tau pathologies leads to tau-mediated neurodegeneration in Alzheimer's disease. However, the relative contributions of amyloid beta and tau peptide accumulation to the manifestation of the pathological phenotype in the early stages, before the overt deposition of plaques and tangles, are still unclear. We investigated the longitudinal pathological effects of combining human-like amyloidosis and tauopathy in a novel transgenic rat model, coded McGill-R-APPxhTau.
View Article and Find Full Text PDFTransl Neurodegener
December 2024
Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 88 Jiefang Road, Hangzhou, 310009, China.
Background: Alzheimer's disease (AD) is the most common form of neurodegenerative disorder, which is characterized by a decline in cognitive abilities. Genome-wide association and clinicopathological studies have demonstrated that the CD2-associated protein (CD2AP) gene is one of the most important genetic risk factors for AD. However, the precise mechanisms by which CD2AP is linked to AD pathogenesis remain unclear.
View Article and Find Full Text PDFBrain Res Bull
December 2024
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!