While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature (T) up to 300 K, an atomic magnetic moment of ~0.21 [Formula: see text]/Cr and perpendicular magnetic anisotropy (PMA) constant (K) of 4.89 × 10 erg/cm at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer (T ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093203 | PMC |
http://dx.doi.org/10.1038/s41467-021-22777-x | DOI Listing |
Phys Rev Lett
December 2024
Institute of Molecular Science, University of Valencia, Catedratico Jose Beltrán 2, 46980 Paterna, Spain.
The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFSci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFSmall
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
MnSn(= rare-earth) kagome magnets have been one of the research focuses in condensed matter physics, primarily due to their exotic physical properties rooted in the interplay between magnetism and nontrivial topological band structures. We reported herein the crystal growth of Cr substituted DyMnCrSnand investigations on their magnetotransport properties. It is unveiled that the Mn kagome layer is destroyed and the in-plane ferromagnetic exchange is consequently weakened by the substituted nonmagnetic Cr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!