IL-17A plays an essential role in the pathogenesis of many autoimmune diseases, including psoriasis and multiple sclerosis. Act1 is a critical adaptor in the IL-17A signaling pathway. In this study, we report that an anti-sense long noncoding RNA, , regulates Act1 expression and IL-17A signaling by recruiting SRSF10, which downregulates the expression of IRF1, a transcriptional factor of Act1. Interestingly, we found that a psoriasis-susceptible variant of A4165G (rs13210247) is a gain-of-function mutant. Furthermore, we identified a mouse gene that is homologous to and has a similar ability to regulate Act1 expression and IL-17A signaling. Importantly, treatment with lentiviruses expressing or SRSF10 yielded therapeutic effects in mouse models of psoriasis and experimental autoimmune encephalomyelitis. These findings suggest that and/or SRSF10 may represent attractive therapeutic targets in the treatment of IL-17-related autoimmune diseases, such as psoriasis and multiple sclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.2001223DOI Listing

Publication Analysis

Top Keywords

autoimmune diseases
12
il-17a signaling
12
long noncoding
8
noncoding rna
8
psoriasis multiple
8
multiple sclerosis
8
act1 expression
8
expression il-17a
8
identification long
4
rna key
4

Similar Publications

Bacterial proteome microarray technology in biomedical research.

Trends Biotechnol

January 2025

Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Adv Biol Regul

December 2024

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.

View Article and Find Full Text PDF

Chromosome aberrations and autoimmunity: Immune-mediated diseases associated with 18p deletion and other chromosomal aberrations.

Autoimmun Rev

January 2025

Division of Rheumatology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Fleury Medicine and Health, Fleury Group, São Paulo, SP, Brazil. Electronic address:

Recent advances in genomic methodologies have significantly enhanced our understanding of immune-mediated rheumatic diseases. Specific structural variants (SVs), such as substantial DNA deletions or insertions, including chromosomal aberrations, have been implicated in diseases of immune dysregulation. Regrettably, SVs are frequently overlooked in next-generation sequencing (NGS) targeted-gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS).

View Article and Find Full Text PDF

Objectives: This study aimed to investigate cerebrospinal fluid (CSF) adenosine deaminase (ADA) levels in various neurological disorders and examine the relationships between CSF ADA levels and immunological parameters.

Methods: Overall, 276 patients whose CSF ADA levels were measured for suspected tuberculous meningitis (TBM) were evaluated. Data on baseline characteristics, final diagnoses, CSF ADA levels, and other laboratory parameters were collected.

View Article and Find Full Text PDF

Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation.

Cytokine

January 2025

College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, The Islamic University of Al Diwaniyah, Diwaniya, Iraq; College of technical engineering, The Islamic University of Babylon, Hillah, Iraq.

Inflammation, driven by various stimuli such as pathogens, cellular damage, or vascular injury, plays a central role in numerous acute and chronic conditions. Current treatments are being re-evaluated, prompting interest in naturally occurring compounds like kaempferol, a flavonoid prevalent in fruits and vegetables, for their anti-inflammatory properties. This study explores the therapeutic potential of kaempferol, focusing on its ability to modulate pro-inflammatory cytokines and its broader effects on inflammatory signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!