Bactofilins are polymer-forming cytoskeletal proteins that are widely conserved in bacteria. Members of this protein family have diverse functional roles such as orienting subcellular molecular processes, establishing cell polarity, and aiding in cell shape maintenance. Using sequence alignment to the conserved bactofilin domain, we identified a bactofilin ortholog, BacA, in the obligate intracellular pathogen Chlamydia trachomatis. Chlamydia species are obligate intracellular bacteria that undergo a developmental cycle alternating between infectious nondividing elementary bodies (EBs) and noninfectious dividing reticulate bodies (RBs). As Chlamydia divides by a polarized division process, we hypothesized that BacA may function to establish polarity in these unique bacteria. Utilizing a combination of fusion constructs and high-resolution fluorescence microscopy, we determined that BacA forms dynamic, membrane-associated filament- and ring-like structures in Chlamydia's replicative RB form. Contrary to our hypothesis, these structures are distinct from the microbe's cell division machinery and do not colocalize with septal peptidoglycan or MreB, the major organizer of the bacterium's division complex. Bacterial two-hybrid assays demonstrated BacA interacts homotypically but does not directly interact with proteins involved in cell division or peptidoglycan biosynthesis. To investigate the function of BacA in chlamydial development, we constructed a conditional knockdown strain using a newly developed CRISPR interference system. We observed that reducing expression significantly increased chlamydial cell size. Normal RB morphology was restored when an additional copy of was expressed in during knockdown. These data reveal a novel function for chlamydial bactofilin in maintaining cell size in this obligate intracellular bacterium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281209 | PMC |
http://dx.doi.org/10.1128/IAI.00203-21 | DOI Listing |
Nat Commun
January 2025
IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.
View Article and Find Full Text PDFInfect Immun
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.
Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!