New triterpenoid saponins from the leaves of Ilex chinensis and their hepatoprotective activity.

Chin J Nat Med

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China. Electronic address:

Published: May 2021

Seven new triterpenoid saponins, including five ursane-type saponins, ilexchinenosides R-V (1-5), and two oleanane-type saponins, ilexchinenosides W-X (6-7), with four known triterpenoid saponins (8-11) were isolated from the leaves of Ilex chinensis. Their structures were elucidated by comprehensive spectroscopic 1D and 2D NMR and HR-ESI-MS data. Their sugar moieties were determined by HPLC analysis compared with standards after hydrolysis and derivatization. Compounds 1, 2, 4, 9 and 10 exhibited potential hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell injury in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(21)60036-5DOI Listing

Publication Analysis

Top Keywords

triterpenoid saponins
12
leaves ilex
8
ilex chinensis
8
hepatoprotective activity
8
saponins ilexchinenosides
8
saponins leaves
4
chinensis hepatoprotective
4
activity triterpenoid
4
saponins
4
saponins including
4

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.

View Article and Find Full Text PDF

Enhancement of Doxorubicin Efficacy by Bacopaside II in Triple-Negative Breast Cancer Cells.

Biomolecules

January 2025

Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia.

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

Two previously undescribed triterpenoid saponins from the roots and rhizomes of Maxim.

Front Chem

January 2025

Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China.

Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects.

Purpose: This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!