Ultrasonic inspection is a common tool for non-destructive testing in civil engineering (NDT-CE). Currently, transducers are coupled directly to the specimen surface, which makes the inspection time-consuming. Air-coupled ultrasound (ACU) transducers are more time-efficient but need a high pressure amplitude as the impedance mismatch between the air and the concrete is high and large penetration depth is needed for the inspection. Current approaches aim at eliminating the impedance mismatch between the transducer and the air to gain amplitude; however, they hardly fulfill the NDT-CE requirements. In this study, an alternative approach for ultrasound generation is presented: the signal is generated by a fluidic switch that rapidly injects a mass flow into the ambience. The acoustic field, the flow field, and their interaction are investigated. It is shown that the signal has dominant frequencies in the range of 35-60 kHz, and the amplitude is comparable to that of a commercial ACU transducer.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0003937DOI Listing

Publication Analysis

Top Keywords

acoustic field
8
fluidic switch
8
impedance mismatch
8
experimental analysis
4
analysis acoustic
4
field ultrasonic
4
ultrasonic pulse
4
pulse induced
4
induced fluidic
4
switch ultrasonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!