Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation.

Bioresour Technol

Department of Biotechnology, University of Szeged, Hungary; Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary. Electronic address:

Published: August 2021

Short rotation plantations of willow genotypes, harvested in vegetative growth phases, were tested as an alternative biomass for methane production. The substrate characteristics, maximal methane yields (K) and highest methane production rates (µmax) were determined. Leaves and stems from diploid Energo (EN) and tetraploid (PP) plants, harvested in June were superior methane sources to woody tissue. This could be related to the lower lignin contents in green willow. Fermentation of pooled biomasses from tetraploid genotypes harvested in June-August was more efficient than methane production from diploid tissues. Microbial community analyses by 16S rRNA genes showed a dominance of the order Clostridiales. In field study, based on Energo plantation, the maximum in green biomass accumulation was in early month 9 of the vegetation period. A theoretical calculation showed similar or better energy potential per unit area for willow than in the case of maize silage. This study encourages the use of green willow biomass as feedstock in biomethanation processes due to its relatively low production costs and uncomplicated agricultural practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125223DOI Listing

Publication Analysis

Top Keywords

methane production
16
short rotation
8
willow genotypes
8
genotypes harvested
8
green willow
8
methane
6
willow
5
green
4
production green
4
green woody
4

Similar Publications

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior.

View Article and Find Full Text PDF

The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!