Probing the mineralized tissue-adhesive interface for tensile nature and bond strength.

J Mech Behav Biomed Mater

Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA. Electronic address:

Published: August 2021

The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206037PMC
http://dx.doi.org/10.1016/j.jmbbm.2021.104563DOI Listing

Publication Analysis

Top Keywords

bond strength
24
mechanical performance
12
dentin-adhesive interface
12
mechanical behavior
12
strength tests
12
diametral compression
12
compression test
12
mineralized tissue
12
mineralized tissue-adhesive
8
tissue-adhesive interface
8

Similar Publications

This research aimed to assess the shear bond strength (SBS) of metal brackets bonded to composite veneers using different surface preparations. One-hundred composite disks were divided into 10 different groups whereby each group combines a surface preparation (roughening or no roughening), etching agent (37% phosphoric or 9.5% hydrofluoric acid), adhesive protocol (self-etch or total-etch), and bonding agent (with or without G-Premio Bond).

View Article and Find Full Text PDF

The Degree and Origin of the Cooperativity of the Chalcogen (Ch···N) and Dihydrogen (H···H) Bonds in Some Triad Systems.

J Comput Chem

January 2025

Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.

The strength and cooperative energy of chalcogen and dihydrogen bonds in some ABC triad systems of the types XHTe…NCH…HY (X = F, Cl, Br, I, H; Y = Li, Na, BeH, MgH) and FHCh…NCH…HNa (Ch = Te, Se, S) were computed and compared at several levels of theory. All resulting data showed that the strengths of chalcogen (Te…N) and dihydrogen (H…H) bonds increase in the order of H < I < Br < Cl < F, and Be < Mg < Li < Na, respectively. Then, the comparison of data for the FHTe…NCH…HY, FHSe…NCH…HNa, and FHS…NCH…HNa triads indicated that the interaction, stabilization, and cooperativity energies decrease in the order of Te > Se > S.

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

Mechanical Properties and Decomposition Behavior of Compression Moldable Poly(Malic Acid)/-Tricalcium Phosphate Hybrid Materials.

Polymers (Basel)

January 2025

Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.

Calcified tissues in living organisms, such as bone, dentin, and enamel, often require surgical intervention for treatment. However, advances in regenerative medicine have increased the demand for materials to assist in regenerating these tissues. Among the various forms of calcium phosphate (CaP), tricalcium phosphate (TCP)-particularly its α-TCP form-stands out due to its high solubility and efficient calcium release, making it a promising candidate for bone regeneration applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!