A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. | LitMetric

Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues.

Sci Total Environ

College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, PR China.

Published: September 2021

AI Article Synopsis

  • Arsenic and cadmium are harmful metals that can be toxic to humans, making their reduction in rice critical for health and safety.
  • Iron-enriched corncob-eggshell biochar (FCEB) was found to be the most effective amendment in pot trials, increasing rice yields by 9-12% compared to other biochars.
  • FCEB significantly lowered the levels of arsenic and cadmium in brown rice while enhancing beneficial iron plaque formation on roots, which helped prevent metal uptake by plants.

Article Abstract

Arsenic (As) and cadmium (Cd) are nonessential toxic metal(loids) that are carcinogenic to humans. Hence, reducing the bioavailability of these metal(loids) in soils and decreasing their accumulation in rice grains is essential for agroecology, food safety, and human health. Iron (Fe)-enriched corncob biochar (FCB), Fe-enriched charred eggshell (FEB), and Fe-enriched corncob-eggshell biochar (FCEB) were prepared for soil amelioration. The amendment materials were applied at 1% and 2% application rates to observe their alleviation effects on As and Cd loads in rice paddy tissues and yield improvements using pot trials. The FCEB treatment increased paddy yields compared to those of FCB (9-12%) and FEB (3-36%); this could be because it contains more plant essential nutrients than FCB and a lower calcite content than that of FEB. In addition, FCEB significantly reduced brown rice As (As, 29-60%) and Cd (Cd, 57-81%) contents compared to those of the untreated control (CON). At a 2% application rate, FCEB reduced the average mobility of As (56%) and Cd (62%) in rhizosphere porewater and enhanced root Fe-plaque formation (76%) compared to those of CON. Moreover, the enhanced Fe-plaque sequestered a substantial amount of As (171.4%) and Cd (90.8%) in the 2% FCEB amendment compared to that of CON. Pearson correlation coefficients and regression analysis indicated that two key mechanisms likely control As and Cd accumulations. First, rhizosphere soil pH and Eh controlled As and Cd availabilities in porewaters and their speciation in the soil. Second, greater Fe-plaque formation in paddy roots grown in the amended soils provided a barrier for plant uptake of the metal(loids). These observations demonstrate that soil amendment with Fe-enriched corncob-eggshell biochar (e.g., 2% FCEB) is a prospective approach for the remediation of metal accumulation from the soil to grain system while simultaneously increasing paddy yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147163DOI Listing

Publication Analysis

Top Keywords

arsenic cadmium
8
accumulation soil
8
rice paddy
8
paddy tissues
8
fe-enriched corncob-eggshell
8
corncob-eggshell biochar
8
biochar fceb
8
fceb reduced
8
fe-plaque formation
8
compared con
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!