A taxonomy of design factors in constructed wetland-microbial fuel cell performance: A review.

J Environ Manage

Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia.

Published: August 2021

The past decade has seen the rapid development of constructed wetland-microbial fuel cell (CW-MFC) technology in many aspects. The first publication on the combination of constructed wetland (CW) and microbial fuel cell (MFC) appeared in 2012, subsequently, research on the subject has grown exponentially to improve the performance of CW-MFCs in their dual roles of wastewater treatment and power generation. Although significant research has been conducted on this technology worldwide, a comprehensive and critical review of effective controlling parameters is lacking. More broadly, research is needed to draw up-to-date conclusions on recent developments and to identify knowledge gaps for further studies. This review paper systematically enumerates and reviews research studies published in this area to determine the key design factors and their role in CW-MFC performance. Moreover, a taxonomy of all CW-MFC design parameters has been synthesised from the literature. Importantly, this original work provides a comprehensive conceptual framework for future researchers, designers, builders, and users to understand CW-MFC technology. Within the taxonomy, parameters are placed in three main categories (physical/environmental, chemical, and biological/electrochemical) and comprehensive details are given for each parameter. Finally, a comprehensive summary of the parameters has been tabulated showing their impact on CW-MFC operation, design recommendations from literature, and the significant research gaps that this review has identified within the existing literature. It is hoped that this paper will provide a clear and rich picture of this technology at its current stage of development and furthermore, will facilitate a deeper understanding of CW-MFC performance for long-term and large-scale development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112723DOI Listing

Publication Analysis

Top Keywords

fuel cell
12
design factors
8
constructed wetland-microbial
8
wetland-microbial fuel
8
cw-mfc technology
8
cw-mfc performance
8
cw-mfc
6
taxonomy design
4
factors constructed
4
performance
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!