EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118117 | DOI Listing |
Cell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shandong University, Jinan, Shandong Province, China.
Background: Motoric cognitive risk syndrome (MCR), a pre-dementia syndrome, is a risk factor for disability and mortality. However, few studies have examined the associations between sleep quality trajectories and MCR. This study aimed to explore the associations between sleep quality trajectories and MCR, and whether these associations vary by gender among Chinese rural older adults.
View Article and Find Full Text PDFAnn Indian Acad Neurol
January 2025
Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
Background And Objectives: Psychosis is one of the major neuropsychiatric non-motor symptoms of Parkinson's disease (PD). Prolonged latency and decreased amplitude of the P300 event-related potential (ERP) is a potential neurophysiologic biomarker of deeper neurocognitive deficits in PD. We aimed to characterize electroencephalogram (EEG)/ERP parameters in PD patients with and without psychosis (PDP and PDNP, respectively), and to determine if such measures could act as endophenotypes for PD-associated psychosis (PDP).
View Article and Find Full Text PDFJ Sleep Res
December 2024
Vita-Salute San Raffaele University, Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Zhongguo Dang Dai Er Ke Za Zhi
December 2024
Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, China.
The patient is a 10-month and 21-day-old girl who began to show developmental delays at 3 months of age, with severe language developmental disorders, stereotyped movements, and easily provoked laughter. Physical examination revealed fair skin and a flattened occiput. At 10 months of age, a video electroencephalogram suggested atypical absence seizures, with migrating slow-wave activity observed during the interictal period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!