Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model.

Ann Anat

Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Histology, Armed Forces College of Medicine, Cairo, Egypt. Electronic address:

Published: September 2021

Background: Oligospermia is one of the common causative factors of male infertility. Some medical and hormonal therapy for male infertility is typically with unsatisfactory outcome. Stem cell therapy has become a new therapeutic strategy for restoring function in addition to inducing proliferation and differentiation of malfunctioning germ cells. This work aims at investigating the potential ability of BM-MSCs to repair the spermatogenic arrest in oligospermic rat model.

Methods: In this work, a rat model of oligospermia was induced using two intraperitoneal injections of busulfan (15 mg/kg) with two weeks interval. Rats were divided into (i) donor group [source of the bone marrow mesenchymal stem cells (BM-MSCs) that were labelled and transfected with green fluorescent protein (GFP)] and (ii) experimental groups that were subdivided into: GpI (control), GpII (spermatogenic arrest model), GpIII (untreated rats), and GpIV (BM-MSCs treated rats). Estimation of the testicular weight, sperm count and motility % were performed. Histological and immunohistochemical staining for inducible nitric oxide synthase (iNOS) and caspase-3 (Cas-3) were conducted. Besides, the level of the testicular malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and testicular testosterone were estimated by ELISA.

Results: Oligospermic rats illustrated hypospermatogenesis of the seminiferous tubule with spermatocyte and spermatid arrest, focal thickening of the basement membrane and significant increase in germ cells apoptosis and testicular oxidative stress. Compared with the control, MDA and TNF-α were markedly elevated with marked suppression of the testicular testosterone. Intra-testicular injection of BM-MSCs substantially ameliorated these changes and effectively improved the sperm count and motility %.

Conclusions: BM-MSCs improved the induced-spermatogenic arrest in the rat model mainly through anti-apoptotic and antioxidant paracrine effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2021.151750DOI Listing

Publication Analysis

Top Keywords

spermatogenic arrest
12
rat model
12
paracrine effects
8
mesenchymal stem
8
stem cells
8
male infertility
8
germ cells
8
sperm count
8
count motility
8
testicular testosterone
8

Similar Publications

CENP-E haploinsufficiency causes chromosome misalignment and spindle assembly checkpoint activation in the spermatogonia.

Andrology

December 2024

Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.

Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Slow-release GnRH agonist implants are used in male dogs for contraception, and their effects are reversible, although safety concerns exist.
  • A study was conducted to investigate the impact of these implants on testicular stress and androgen receptor signaling in dogs after the implants were removed, comparing them to untreated controls.
  • Results showed both upregulation and downregulation of various proteins related to stress response and androgen receptors, indicating that GnRH implants do not increase cellular stress compared to natural breeding cycles, but more research is needed on hypoxic conditions.
View Article and Find Full Text PDF

Background: It is well-established that spermatogenesis, semen quality, and reproductive hormones are interlinked. It is, however, less well-described how various specific testicular histopathologies are linked to reproductive hormones and semen quality.

Objectives: To describe the detailed relationship between specific testicular histopathologies and the serum concentrations of reproductive hormones and semen quality.

View Article and Find Full Text PDF

Overexpression of TAF4B Promoted the Proliferation of Undifferentiated Spermatogonia in Cattleyak In Vitro.

Reprod Domest Anim

November 2024

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.

As the hybrid between cattle and yak, cattleyak is a typical male sterile mammal, and the underlying mechanism for its spermatogenic arrest is still unclear. In this study, the coding region of cattleyak TAF4B gene was cloned by RT-PCR and analysed by bioinformatics. To investigate the effects of TAF4B on cellular proliferation and differentiation, an expression vector was generated and introduced into undifferentiated spermatogonia (UDSPG) of cattleyak.

View Article and Find Full Text PDF

Identification of candidate genes related to hybrid sterility by genomic structural variation and transcriptome analyses in cattle-yak.

J Dairy Sci

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Electronic address:

Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!