Myocardial infarction (MI) happens when blood stops circulating to an explicit segment of the heart causing harm to the heart muscles. Vectorcardiography (VCG) is a technique of recording direction and magnitude of the signals that are produced by the heart in a 3-lead representation. In this work, we present a technique for detection of MI in the inferior portion of heart using short duration VCG signals. The raw signal was pre-processed using the median and Savitzky-Golay (SG) filter. The Stationary Wavelet Transform (SWT) was used for time-invariant decomposition of the signal followed by feature extraction. The selected features using minimum-redundancy-maximum-relevance (mRMR) based feature selection method were applied to the supervised classification methods. The efficacy of the proposed method was assessed under both class-oriented and a more real-life subject-oriented approach. An accuracy of 99.14 and 89.37% were achieved respectively. Results of the proposed technique are better than existing state-of-art methods and used VCG segment is shorter. Thus, a shorter segment and a high accuracy can be helpful in the automation of timely and reliable detection of MI. The satisfactory performance achieved in the subject-oriented approach shows reliability and applicability of the proposed technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/bmt-2020-0329 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!