Cytotoxicity and genotoxicity of the carcinogen aristolochic acid I (AA-I) in human bladder RT4 cells.

Arch Toxicol

Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.

Published: June 2021

Aristolochic acid (AA-I) induces upper urothelial tract cancer (UUTC) and bladder cancer (BC) in humans. AA-I forms the 7-(2'-deoxyadenosin-N-yl)aristolactam I (dA-AL-I) adduct, which induces multiple A:T-to-T:A transversion mutations in TP53 of AA-I exposed UTUC patients. This mutation is rarely reported in TP53 of other transitional cell carcinomas and thus recognized as an AA-I mutational signature. A:T-to-T:A transversion mutations were recently detected in bladder tumors of patients in Asia with known AA-I-exposure, implying that AA-I contributes to BC. Mechanistic studies on AA-I genotoxicity have not been reported in human bladder. In this study, we examined AA-I DNA adduct formation and mechanisms of toxicity in the human RT4 bladder cell line. The biological potencies of AA-I were compared to 4-aminobiphenyl, a recognized human bladder carcinogen, and several structurally related carcinogenic heterocyclic aromatic amines (HAA), which are present in urine of smokers and omnivores. AA-I (0.05-10 µM) induced a concentration- and time-dependent cytotoxicity. AA-I (100 nM) DNA adduct formation occurred at over a thousand higher levels than the principal DNA adducts formed with 4-ABP or HAAs (1 µM). dA-AL-I adduct formation was detected down to a 1 nM concentration. Studies with selective chemical inhibitors provided evidence that NQO1 is the major enzyme involved in AA-I bio-activation in RT4 cells, whereas CYP1A1, another enzyme implicated in AA-I toxicity, had a lesser role in bio-activation or detoxification of AA-I. AA-I DNA damage also induced genotoxic stress leading to p53-dependent apoptosis. These biochemical data support the human mutation data and a role for AA-I in BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284306PMC
http://dx.doi.org/10.1007/s00204-021-03059-3DOI Listing

Publication Analysis

Top Keywords

aa-i
16
human bladder
12
adduct formation
12
aristolochic acid
8
acid aa-i
8
rt4 cells
8
da-al-i adduct
8
at-to-ta transversion
8
transversion mutations
8
aa-i dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!