The acute mouse pancreatic tissue slice is a unique in situ preparation with preserved intercellular communication and tissue architecture that entails significantly fewer preparation-induced changes than isolated islets, acini, ducts, or dispersed cells described in typical in vitro studies. By combining the acute pancreatic tissue slice with live-cell calcium imaging in confocal laser scanning microscopy (CLSM), calcium signals can be studied in a large number of endocrine and exocrine cells simultaneously, with a single-cell or even subcellular resolution. The sensitivity permits the detection of changes and enables the study of intercellular waves and functional connectivity as well as the study of the dependence of physiological responses of cells on their localization within the islet and paracrine relationship with other cells. Finally, from the perspective of animal welfare, recording signals from a large number of cells at a time lowers the number of animals required in experiments, contributing to the 3R-replacement, reduction, and refinement-principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62293 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Faculty of Medicine, University of Maribor, Maribor, Slovenia.
Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
Aims: To investigate the role of chemerin reduction in mediating exercise-induced Glucagon-like peptide-1 (GLP-1) secretion and the amelioration of pancreatic β-cell function in obesity.
Materials And Methods: Obesity models were established using wild-type and chemerin systemic knockout mice, followed by 8 weeks of moderate-intensity continuous aerobic exercise training. Serum chemerin levels, GLP-1 synthesis, glucose tolerance, pancreatic β-cell function, structure, and apoptosis were assessed.
Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania.
Background: EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging.
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Introduction: EUS-guided fine-needle organoid creation (EUS-FNO) from pancreatic cancer (PC) has been increasingly important for precision medicine. The cost for pancreatic organoid creation is substantial and close to 2000 USD/specimen in our institution, and the specimen has to be processed immediately after tissue acquisition so the more passes and specimens, the higher cost of organoid creation will incur. To date, no prospective comparison trial has answered how many needle passes of EUS-FNO needed for a successful organoid creation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!