Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Early antibiotic administration is a central component of sepsis guidelines, and delays may increase mortality. However, prior studies have examined the delay to first antibiotic administration as a single time period even though it contains two distinct processes: antibiotic ordering and antibiotic delivery, which can each be targeted for improvement through different interventions. The objective of this study was to characterize and compare patients who experienced order or delivery delays, investigate the association of each delay type with mortality, and identify novel patient subphenotypes with elevated risk of harm from delays.
Design: Retrospective analysis of multicenter inpatient data.
Setting: Two tertiary care medical centers (2008-2018, 2006-2017) and four community-based hospitals (2008-2017).
Patients: All patients admitted through the emergency department who met clinical criteria for infection.
Interventions: None.
Measurements And Main Results: Patient demographics, vitals, laboratory values, medication order and administration times, and in-hospital survival data were obtained from the electronic health record. Order and delivery delays were calculated for each admission. Adjusted logistic regression models were used to examine the relationship between each delay and in-hospital mortality. Causal forests, a machine learning method, was used to identify a high-risk subgroup. A total of 60,817 admissions were included, and delays occurred in 58% of patients. Each additional hour of order delay (odds ratio, 1.04; 95% CI, 1.03-1.05) and delivery delay (odds ratio, 1.05; 95% CI, 1.02-1.08) was associated with increased mortality. A patient subgroup identified by causal forests with higher comorbidity burden, greater organ dysfunction, and abnormal initial lactate measurements had a higher risk of death associated with delays (odds ratio, 1.07; 95% CI, 1.06-1.09 vs odds ratio, 1.02; 95% CI, 1.01-1.03).
Conclusions: Delays in antibiotic ordering and drug delivery are both associated with a similar increase in mortality. A distinct subgroup of high-risk patients exist who could be targeted for more timely therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448901 | PMC |
http://dx.doi.org/10.1097/CCM.0000000000005054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!