Background: Applied topically, growth factors, cytokines, and other components in bovine colostrum are known to affect collagen biosynthesis, thus offering promise as a therapeutic modality in wound healing, delay in skin aging, and skin rejuvenation.

Objective: To demonstrate the protective effect that liposomal bovine colostrum exerts on skin aging using telomere length as an aging biomarker.

Methods: Human fibroblasts were cultured for 8 weeks with colostrum at three concentrations (0.125%, 0.25%, 0.50%). Cells were cultured and assayed both under standard conditions, as well as with H2O2 added as an agent of oxidative stress. Alterations in proliferation rates, telomere lengths, and telomere shortening rates (TSRs) were determined in each treatment group and compared.

Results: Colostrum increased the proliferation rate of the fibroblast control cells and the addition of H2O2(without colostrum) decreased the proliferation rates of the fibroblast control cells. Under standard culture conditions, telomeres shortened progressively over 8 weeks and the addition of colostrum reduced the rate of telomere shortening. Under oxidative stress conditions (H2O2 – induced) the TSR increased; however, treatment with colostrum appeared to attenuate this increase.

Conclusions: Under normal culture conditions and after both 4 weeks and 8 weeks of treatment, liposomal bovine colostrum appears to exert a protective effect on telomere length erosion. Under culture conditions of oxidative stress and after 8 weeks of treatment, colostrum appears to exert a protective effect on telomere length erosion. These results suggest that topical treatment of the liposomal bovine colostrum formulation would enhance skin health as the skin ages. J Drugs Dermatol. 20(5):538-545. doi:10.36849/JDD.5851.

Download full-text PDF

Source
http://dx.doi.org/10.36849/JDD.5851DOI Listing

Publication Analysis

Top Keywords

bovine colostrum
20
skin aging
12
liposomal bovine
12
telomere length
12
oxidative stress
12
culture conditions
12
colostrum
10
proliferation rates
8
telomere shortening
8
fibroblast control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!