Androgen receptor (AR) is a nuclear hormone receptor that regulates the transcription of genes involved in the development of testis, prostate and the nervous system. Misregulation of AR is a major driver of prostate cancer (PC). The primary agonist of full-length AR is testosterone, whereas its splice variants, for example, AR-v7 implicated in cancer may lack a ligand-binding domain and are thus devoid of proper hormonal control. Recently, it was demonstrated that full-length AR, but not AR-v7, can undergo liquid-liquid phase separation (LLPS) in a cellular model of PC. In a detailed bioinformatics and deletion analysis, we have analyzed which AR region is responsible for LLPS. We found that its DNA-binding domain (DBD) can bind RNA and can undergo RNA-dependent LLPS. RNA regulates its LLPS in a reentrant manner, that is, it has an inhibitory effect at higher concentrations. As RNA binds DBD more weakly than DNA, while both RNA and DNA localizes into AR droplets, its LLPS depends on the relative concentration of the two nucleic acids. The region immediately preceding DBD has no effect on the LLPS propensity of AR, whereas the functional part of its long N-terminal disordered transactivation domain termed activation function 1 (AF1) inhibits AR-v7 phase separation. We suggest that the resulting diminished LLPS tendency of AR-v7 may contribute to the misregulation of the transcription function of AR in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197421PMC
http://dx.doi.org/10.1002/pro.4100DOI Listing

Publication Analysis

Top Keywords

phase separation
12
dna-binding domain
8
liquid-liquid phase
8
androgen receptor
8
prostate cancer
8
llps
7
domain minimal
4
minimal region
4
region driving
4
driving rna-dependent
4

Similar Publications

Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.

View Article and Find Full Text PDF

Objectives: The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the detection of osimertinib in rat plasma, lung and brain tissues.

Methods: Forty-eight rats were randomly divided into an experimental group (receiving osimertinib at doses of 5, 8, and 10 mg/kg) and a control group. After continuous intragastric administration for 15 days, samples of blood, lung, and brain tissue were collected.

View Article and Find Full Text PDF

Effects of a Serotonin Receptor Peptide on Behavioral Pattern Separation in Sham- vs. Mild Traumatic Brain Injured Rats.

Endocrinol Diabetes Metab J

June 2024

Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA.

Aims: Behavioral pattern separation is a hippocampal-dependent component of episodic memory and a sensitive marker of early cognitive decline. Here we tested whether mild traumatic injury causes loss of pattern separation in the rat and for its prevention by a novel neuroprotective peptide fragment of the human serotonin 2A receptor (SN..

View Article and Find Full Text PDF

Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases.

View Article and Find Full Text PDF

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!