Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202100005DOI Listing

Publication Analysis

Top Keywords

focusing trapping
12
insulator-based dielectrophoretic
8
non-newtonian fluids
8
idep focusing
8
polyethylene oxide
8
xanthan gum
8
particle focusing
8
electric field
8
focusing
6
dielectrophoretic focusing
4

Similar Publications

Purpose: When serious illness occurs, effective communication is essential but challenged by language barriers. This study explores how patients with limited Danish proficiency and their families experience language barriers during cancer care in two Danish public hospitals.

Method: Adopting a phenomenological-hermeneutic approach, the study stresses narratives in understanding participants' lived experiences.

View Article and Find Full Text PDF

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.

View Article and Find Full Text PDF

The development of hepatic metastases is the leading cause of mortality in gastrointestinal (GI) cancers and substantial research efforts have been focused on elucidating the intricate mechanisms by which tumor cells successfully migrate to, invade, and ultimately colonize the liver parenchyma. Recent evidence has shown that perturbations in myeloid biology occur early in cancer development, characterized by the initial expansion of specific innate immune populations that promote tumor growth and facilitate metastases. This review summarizes the pathophysiology underlying the proliferation of myeloid cells that occurs with incipient neoplasia and explores the role of innate immune-host interactions, specifically granulocytes and neutrophil extracellular traps, in promoting hepatic colonization by tumor cells through the formation of the "premetastatic niche".

View Article and Find Full Text PDF

Mercury tolerance and bioremediation potential of mountain soil bacteria: Insights from Darjeeling, containing elevated levels of mercury.

Sci Total Environ

January 2025

Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India. Electronic address:

More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL.

View Article and Find Full Text PDF

Hydrogen-assisted (HA) fatigue crack growth (FCG) occurs in ferritic steels, wherein H-dislocation interaction plays a vital role. We aim to model the HAFCG mechanism based on the within the crack tip zone. Our modeling framework is as follows: H is condensed into crack tip and trapped by dislocations; these H significantly decrease dislocation mobility; stress relief via crack blunting is suppressed; localized brittle fracture triggers HAFCG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!