Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning.

Radiol Artif Intell

Diagnostic Image Analysis Group, Radboud University Medical Center, Geert Grooteplein 10 (Route 767), 6525 GA, Nijmegen, the Netherlands (G.E.H.M., J.B., E.T.S., M.P., B.v.G., C.J.); and Fraunhofer MEVIS, Bremen, Germany (B.v.G.).

Published: July 2020

AI Article Synopsis

  • Developed a fully automated deep learning algorithm for spleen segmentation in thorax-abdomen CT scans, using a dataset of 1100 scans from patients treated for cancer between 2014 and 2017.
  • The algorithm showed comparable accuracy to independent radiologists in segmenting the spleen, with Dice scores of approximately 0.96.
  • The use of the algorithm improved radiologists' agreement with a reference standard for detecting splenic volume changes from 81% to 92%.

Article Abstract

Purpose: To develop a fully automated algorithm for spleen segmentation and to assess the performance of this algorithm in a large dataset.

Materials And Methods: In this retrospective study, a three-dimensional deep learning network was developed to segment the spleen on thorax-abdomen CT scans. Scans were extracted from patients undergoing oncologic treatment from 2014 to 2017. A total of 1100 scans from 1100 patients were used in this study, and 400 were selected for development of the algorithm. For testing, a dataset of 50 scans was annotated to assess the segmentation accuracy and was compared against the splenic index equation. In a qualitative observer experiment, an enriched set of 100 scan-pairs was used to evaluate whether the algorithm could aid a radiologist in assessing splenic volume change. The reference standard was set by the consensus of two other independent radiologists. A Mann-Whitney test was conducted to test whether there was a performance difference between the algorithm and the independent observer.

Results: The algorithm and the independent observer obtained comparable Dice scores ( = .834) on the test set of 50 scans of 0.962 and 0.964, respectively. The radiologist had an agreement with the reference standard in 81% (81 of 100) of the cases after a visual classification of volume change, which increased to 92% (92 of 100) when aided by the algorithm.

Conclusion: A segmentation method based on deep learning can accurately segment the spleen on CT scans and may help radiologists to detect abnormal splenic volumes and splenic volume changes.© RSNA, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082410PMC
http://dx.doi.org/10.1148/ryai.2020190102DOI Listing

Publication Analysis

Top Keywords

deep learning
12
segment spleen
8
splenic volume
8
volume change
8
reference standard
8
algorithm independent
8
algorithm
6
scans
6
fully automatic
4
volume
4

Similar Publications

Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.

View Article and Find Full Text PDF

Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!