Convolutional Neural Networks for Automatic Risser Stage Assessment.

Radiol Artif Intell

Department of Software and IT Engineering, Ecole de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3 (H.K., L.D.); Division of Orthopedics, Sainte-Justine Hospital, Montréal, Canada (J.J., C.B., I.N., O.C., S.P., G.G., H.L.); and Department of Surgery, Université de Montréal, Montréal, Canada (M.L.N., S.P., G.G., H.L.).

Published: May 2020

Purpose: To develop an automatic method for the assessment of the Risser stage using deep learning that could be used in the management panel of adolescent idiopathic scoliosis (AIS).

Materials And Methods: In this institutional review board approved-study, a total of 1830 posteroanterior radiographs of patients with AIS (age range, 10-18 years, 70% female) were collected retrospectively and graded manually by six trained readers using the United States Risser staging system. Each radiograph was preprocessed and cropped to include the entire pelvic region. A convolutional neural network was trained to automatically grade conventional radiographs according to the Risser classification. The network was then validated by comparing its accuracy against the interobserver variability of six trained graders from the authors' institution using the Fleiss κ statistical measure.

Results: Overall agreement between the six observers was fair, with a κ coefficient of 0.65 for the experienced graders and agreement of 74.5%. The automatic grading method obtained a κ coefficient of 0.72, which is a substantial agreement with the ground truth, and an overall accuracy of 78.0%.

Conclusion: The high accuracy of the model presented here compared with human readers suggests that this work may provide a new method for standardization of Risser grading. The model could assist physicians with the task, as well as provide additional insights in the assessment of bone maturity based on radiographs.© RSNA, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082353PMC
http://dx.doi.org/10.1148/ryai.2020180063DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
risser stage
8
risser
5
neural networks
4
networks automatic
4
automatic risser
4
stage assessment
4
assessment purpose
4
purpose develop
4
develop automatic
4

Similar Publications

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.

Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.

View Article and Find Full Text PDF

Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease.

View Article and Find Full Text PDF

Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!